Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
The world's rangelands and drylands are undergoing rapid change, and consequently are becoming more difficult to manage. Big data and digital technologies (digital tools) provide land managers with a means to understand and adaptively manage change. An assortment of tools—including standardized field ecosystem monitoring databases; web‐accessible maps of vegetation change, production forecasts, and climate risk; sensor networks and virtual fencing; mobile applications to collect and access a variety of data; and new models, interpretive tools, and tool libraries—together provide unprecedented opportunities to detect and direct rangeland change. Accessibility to and manager trust in and knowledge of these tools, however, have failed to keep pace with technological advances. Collaborative adaptive management that involves multiple stakeholders and scientists who learn from management actions is ideally suited to capitalize on an integrated suite of digital tools. Embedding science professionals and experienced technology users in social networks can enhance peer‐to‐peer learning about digital tools and fulfill their considerable promise.more » « less
-
Abstract Alternative states maintained by feedbacks are notoriously difficult, if not impossible, to reverse. Although positive interactions that modify soil conditions may have the greatest potential to alter self‐reinforcing feedbacks, the conditions leading to these state change reversals have not been resolved. In a 9‐yr study, we modified horizontal connectivity of resources by wind or water on different geomorphic surfaces in an attempt to alter plant–soil feedbacks and shift woody‐plant‐dominated states back toward perennial grass dominance. Modifying connectivity resulted in an increase in litter cover regardless of the vector of transport (wind, water) followed by an increase in perennial grass cover 2 yr later. Modifying connectivity was most effective on sandy soils where wind is the dominant vector, and least effective on gravelly soils on stable surfaces with low sediment movement by water. We found that grass cover was related to precipitation in the first 5 yr of our study, and plant–soil feedbacks developed following 6 yr of modified connectivity to overwhelm effects of precipitation on sandy, wind‐blown soils. These feedbacks persisted through time under variable annual rainfall. On alluvial soils, either plant–soil feedbacks developed after 7 yr that were not persistent (active soils) or did not develop (stable soils). This novel approach has application to drylands globally where desertified lands have suffered losses in ecosystem services, and to other ecosystems where connectivity‐mediated feedbacks modified at fine scales can be expected to impact plant recovery and state change reversals at larger scales, in particular for wind‐impacted sites.more » « less
An official website of the United States government

Full Text Available